www.webgurukul.org

Node.js Cheat Sheet in Simple Terms

Node.js Intro

Purpose: Node.js is a powerful JavaScript runtime built on Chrome's V8 JavaScript engine. It's
designed to build scalable network applications efficiently. Node.js uses non-blocking, event-
driven architecture, enabling it to handle many connections simultaneously without straining the
server. This makes it ideal for developing server-side applications, APls, and real-time web
services.
Key Features:

« Minimalist: Express is lightweight and doesn’t dictate how you should structure your

application.
» Flexible: It has a robust set of features that can be extended with additional modules.
« Robust Routing: Allows you to manage different HTTP routes via a simple and intuitive API.

Node.js Get Started

Purpose: Step-by-step guide to setting up a Node.js environment and creating your first
application.

Example Usage: Install Node.js, set up a simple server using HTTP module, and run your first script.

Node.js Modules

Purpose: Modules are reusable blocks of code whose existence does not accidentally impact.
Example Usage: Use require() to include modules like http, fs in your Node.js scripts.

Node.js HTTP Module

Purpose: Allows you to create web servers that listen for HTTP requests from clients.
Example Usage:

const http = require('http’);
const server = http.createServer((reg, res) => {
res.writeHead (200, {'Content-Type" 'text/

plain'});
res.end('Hello World\n"):

b;

server.listen (SDUU):

Node.js File System

Purpose: Provides a way to perform file operations like read, write, update, and delete.
Example Usage:

const fs = require('fs’);

fs.readFile('input.txt, function (err, data) {
if (err) throw err;
console.log(data.toString());

1)

Node.js URL Module

Purpose: Parses URL strings and returns an object with accessible properties to the parts of the URL.
Example Usage:

const url = require('url’);
const myUrl = new URL('httszemmple.cum?nume=ubc&status=ﬂctiue');
Consoie.iog(myUrI.hastnume); /] ‘example.com’

Node.js NPM

Purpose: Node Package Manager for sharing and borrowing packages, and also managing dependencies
in your projects.
Example Usage:

Install packages using npm install <package _name>, and manage them
with a package.json file.

Node.js Events

Purpose: Allows you to create, fire, and listen for your own events.
Example Usage:

const events = require('events’);

const eventEmitter = new events.EventEmitter();

eventEmitter.on('myEvent’, function () {
console.log('Event Fired!’);

3

eventEmitter.emit('myEvent);

Node.js Upload Files

Purpose: Handling file uploads from the client-side.
Example Usage:

const formidable = require(formidable’);
const http = require('http’);
const form = new formidnble.InCGmingForm();

http.createServer((req, res) => {

form.parse(req, (err, fields, files) => {
res.write('File uploaded);
res.end();

1);
}).listen(3000);

R - NS W - - S W - M- WS- W - BRSO - EEE R - e B B R B R T B R B R B R R RN BN RN, TR RN, TR LR TR B TR B TR L TR BN R B R R TR R R R R e AR W aEw W AR W R EEw W R aEe R R R e . EaEE SR S R SR SRR R e N S e NS Al RS e Al N s SR s SR s SRS s SR L S S SR LR S LR S R R S R R e R R e

Node.js Email

Purpose: Sending emails using Node.js via SMTP protocol.
Example Usage :

const nodemailer = require('nodemailer’);
let transporter = nodemailer.createTransport({
service: 'gmail,
auth: {
user: 'your-email@gmail.com),
pass: your-password

}
1)

let mailOptions = {
from: 'your-email@gmail.com,
to: to-email@gmail.com,
subject: 'Sending Email using Node.js/,
text: That was easy!
};
transporter.sendMail(mailOptions, function(error, info){
if (error) {
Console.log(ewor);
} else {
console.log('Email sent:' + info.response);

};

Built-in Modules

Purpose: Node.js comes with a variety of built-in modules that require no additional installation.
Example Modules :

« File System (fs): Express is lightweight and doesn't dictate how you should structure your
application.

« HTTP (http): It has a robust set of features that can be extended with additional modules.

« URL (url): Allows you to manage different HTTP routes via a simple and intuitive API.

- Events (events): Provides the ability to create and handle custom events.

« Util (util): Helps in accessing utility functions useful for programming.

Node.js Editor

Purpose: Any text editor or Integrated Development Environment (IDE) that supports
JavaScript can be used to write Node.js code.
Recommended Editor:
« Visual Studio Code: Popular for its excellent support for JavaScript
and Node.|s with helpful extensions like ESLint, Nodemon, and
others.

Node.js Compiler

Purpose: Node.|s does not use a traditional compiling stage; instead, it interprets JavaScript
code via the V8 JavaScript engine.

Example Usage: Node.js compiles JavaScript code to machine code

using just-in-time (JIT) compilation during execution to improve

performance.

Node.js Server

Purpose: Setting up a server to handle web requests and serve responses in a non-blocking
manner.
Example Usage:

const http = require('http’);

const server = http.createServer((req, res) => {
res.statusCode = 200;
res.setHeader('Content-Type), 'text/plain’);
res.end('Hello World \n’);

b;

server.listen(8000, localhost, () => {
console.log('Server running at http://localhost:8000/');

};

This creates a basic HTTP server that listens on port 8000.
Node.js MongoDB

Purpose:integrate MongoDB with Node.js applications using MongoDB Node.js Driver.
Example Usage :

const { MongoClient } = require('mongodb’);
const uri = "mongodb+srv:/[your-cluster-url’;
const client = new MongoClient(uri);

async function run() {

try {
await client.connect();

console.log('Connected correctly to server");

} finally {
await client.close();

i
}

run().catch(console.dir);




